|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC, в котором AB = 6, BC = 7, AC = 5. Биссектриса угла C пересекает сторону AB в точке D. Найдите площадь треугольника ADC.
Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю. Докажите, что число 11...1 (1986 единиц) имеет по крайней мере |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]
Докажите мультипликативность функций τ(n) и σ(n).
Пусть (m, n) > 1. Что больше τ(mn) или τ(m)τ(n)? Исследуйте тот же вопрос для функции σ(n).
Число n называется совершенным, если σ(n) = 2n.
Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если σ(m) – m = n и σ(n) – n = m.
Докажите, что число 11...1 (1986 единиц) имеет по крайней мере
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|