ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Игра ``Ним''. Имеется несколько кучек камней. Двое по очереди берут из них камни. За один ход разрешается взять любое (ненулевое) количество камней, но только из одной кучки. Выигрывает тот, кто взял последний камень. Для анализа игры каждому набору кучек камней m1, m2, ..., ml поставим в соответствие его ним сумму (5.1 ). а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой n 0. б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой n = 0. в) Опишите выигрышную стратегию в игру ``Ним''. г) Какой следует сделать ход, если перед вами три кучки: 3, 4 и 5 камней? Решение |
Страница: 1 2 >> [Всего задач: 7]
1) m и k записываются в двоичной системе счисления
m = (ms...m1m0)2, k = (ks...k1k0)2
(меньшее
число дополняется спереди нулями).
2) Полученные наборы цифр как векторы складываются покомпонентно по модулю 2:
(ms,..., m1, m0) + (ks,..., k1, k0) (ns,..., n1, n0)(mod 2).
3) Набор цифр
(ns,..., n1, n0) переводится в число n:
(ns...n1n0)2 = n.
Например, 4 7 = 3, так как
4 = (100)2, 7 = (111)2, (1, 0, 0) + (1, 1, 1) (0, 1, 1)(mod 2), (011)2 = 3.
Докажите, что ним-сумма удовлетворяет следующим свойствам:
а) m m = 0; б) m k = k m; в) (m t) k = m (t k); г) если n 0 и то найдется такой номер j ( 1 j l), для которого mj n < mj.
Постройте на множестве марсианских амеб {A, B, C} функцию f, для которой выполнялись бы равенства
f (A) f (B) = f (C), f (A) f (C) = f (B), f (B) f (C) = f (A).
Какие рассуждения остается провести, чтобы решить задачу про амеб?
а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой n 0. б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой n = 0. в) Опишите выигрышную стратегию в игру ``Ним''. г) Какой следует сделать ход, если перед вами три кучки: 3, 4 и 5 камней?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|