|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Точки Q и R расположены соответственно на сторонах MN и MP треугольника MNP, причём MQ = 3, MR = 4. Найдите площадь треугольника MQR, если MN = 4, MP = 5, NP = 6. Докажите, что для любого числа p > 2 найдется такое число |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]
а) б) в)
Назовём белыми числа вида $\sqrt{a+b\sqrt{2}}$, где $a$ и $b$ — целые, не равные нулю. Аналогично, назовём чёрными числа вида $\sqrt{c+d\sqrt{7}}$, где $c$ и $d$ — целые, не равные нулю. Может ли чёрное число равняться сумме нескольких белых?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|