ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня?

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 353]      



Задача 35564

Тема:   [ Ребусы ]
Сложность: 3
Классы: 8,9,10,11

Криптограмма

     
   12 2 24 5 3 21    6 29    28 2 20 18    20 21 5 10     27 17 2 11 2 16 -       
   19 2     27 5     8 29 12 31 22 2 16,     19 2     19 5     17 29 8 29 6 29 16:       
   8 2 19 19 29     10    19 29 14 19 29    29 19 10     2 24 2 11 2 16       
   10 14 18 21     17 2 20 2 28 29 16     21 29 28 6 29 16.       
  
получена заменой букв на числа (от 1 до 32) так, что разным буквам соответствуют разные числа. Отдельные слова разделены несколькими пробелами, буквы - одним пробелом, знаки препинания сохранены. Буквы ``е'' и ``ё'' не различаются. Прочтите четверостишие В. Высоцкого.
Прислать комментарий     Решение

Задача 35652

Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7

Переложите в равенстве  X – I = I  одну из спичек так, чтобы получилось верное равенство.

Прислать комментарий     Решение

Задача 60322

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

Прислать комментарий     Решение

Задача 64309

Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7

Автор: Фольклор

Замените буквы цифрами в ребусе  Г + О = Л – О = В × О = Л – О = М – К = А  так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса.

Прислать комментарий     Решение

Задача 64322

Темы:   [ Математическая логика (прочее) ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 7,8

Перед началом чемпионата школы по шахматам каждый из участников сказал, какое место он рассчитывает занять. Семиклассник Ваня сказал, что займёт последнее место. По итогам чемпионата все заняли различные места, и оказалось, что каждый, кроме, разумеется, Вани, занял место хуже, чем ожидал. Какое место занял Ваня?

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .