ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 353]      



Задача 65084

Темы:   [ Математическая логика (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.

Прислать комментарий     Решение

Задача 65102

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

Прислать комментарий     Решение

Задача 65434

Темы:   [ Ребусы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 5,6,7

Автор: Шноль Д.Э.

Известно, что  ЖЖ + Ж = МЁД.  На какую цифру оканчивается произведение:  В·И·Н·Н·И·П·У·Х  (разными буквами обозначены разные цифры, одинаковыми – одинаковые)?

Прислать комментарий     Решение

Задача 65661

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3
Классы: 7,8,9

На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?

Прислать комментарий     Решение

Задача 66071

Тема:   [ Ребусы ]
Сложность: 3
Классы: 7,8,9

Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .