ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В семиэтажном доме живут домовые. Лифт курсирует между первым и последним этажами, останавливаясь на каждом этаже. На каждом этаже, начиная с первого, в лифт заходил один домовой, но никто не выходил. Когда в лифт зашёл тысячный домовой, лифт остановился. На каком этаже это произошло? Решение |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1110]
На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?
В семиэтажном доме живут домовые. Лифт курсирует между первым и последним этажами, останавливаясь на каждом этаже. На каждом этаже, начиная с первого, в лифт заходил один домовой, но никто не выходил. Когда в лифт зашёл тысячный домовой, лифт остановился. На каком этаже это произошло?
По трём пустым сундукам разложили 40 золотых и 40 серебряных монет, причем в каждый сундук – монеты обоих видов. В первом сундуке оказалось золотых монет на 7 больше, чем серебряных, а во втором сундуке – серебряных монет на 15 меньше, чем золотых. Каких монет больше в третьем сундуке и на сколько?
В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).
По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой?
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|