ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На сторонах AD и CD параллелограмма ABCD расположены точки M и N соответственно, причём  AM : MD = 2 : 7,  CN : ND = 3 : 5.  Прямые CM и BN пересекаются в точке O. Найдите отношения  ON : OB  и  OC : OM.

Вниз   Решение


Существует ли такое натуральное число n, большее 1, что значение выражения    является натуральным числом?

ВверхВниз   Решение


Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 324]      



Задача 32891

Темы:   [ Процессы и операции ]
[ Итерации ]
Сложность: 3
Классы: 7,8,9

На круглом столе через равные промежутки лежат пирожные. Игорь ходит вокруг стола и съедает каждое третье встреченное пирожное (каждое пирожное может быть встречено несколько раз). Когда на столе не осталось пирожных, он заметил, что последним взял пирожное, которое встретил первым, и прошёл ровно семь кругов вокруг стола. Сколько было пирожных?

Прислать комментарий     Решение

Задача 35767

Темы:   [ Процессы и операции ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 7,8

Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной?

Прислать комментарий     Решение

Задача 65421

Темы:   [ Процессы и операции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10,11

Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

Прислать комментарий     Решение

Задача 66552

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 8

Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1?
Прислать комментарий     Решение


Задача 67476

Темы:   [ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10,11

В ряд лежат 100 камней: чёрный, белый, чёрный, белый, ..., чёрный, белый. Одной операцией либо выбирают два чёрных камня, между которыми лежат только белые камни, и перекрашивают все эти белые камни в чёрный цвет, либо выбирают два белых камня, между которыми лежат только чёрные камни, и перекрашивают все эти чёрные камни в белый цвет. Можно ли за несколько таких операций получить ряд, в котором идут сначала 50 чёрных камней, а потом 50 белых?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 324]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .