ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение  f(f(...f(x))) = 0  (n букв "f") имеет ровно 2n различных действительных корней?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 36]      



Задача 65582

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Многочлен n-й степени имеет не более n корней ]
[ Индукция (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение  f(f(...f(x))) = 0  (n букв "f") имеет ровно 2n различных действительных корней?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .