ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вычислите квадратный корень из числа 0,111...111 (100 единиц) с точностью до а) 100; б) 101; в)* 200 знаков после запятой.

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 61002

 [Формула Тейлора для многочленов]
Темы:   [ Теоремы Тейлора и приближения функций ]
[ Многочлен n-й степени имеет не более n корней ]
[ Свойства коэффициентов многочлена ]
Сложность: 4-
Классы: 10,11

Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням  x – c:

P(x) = ck(x – c)k,

причем коэффициенты ck могут быть найдены по формуле

ck =         (0 k n).

Прислать комментарий     Решение

Задача 61303

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Теоремы Тейлора и приближения функций ]
Сложность: 4
Классы: 10,11

Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда

$\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)}{x}}$ = $\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)-\ln1}{(1+x)-1}}$ = 1.

Воспользуйтесь этим фактом для приближенного вычисления натурального логарифма числа N. Как и в задаче 9.51 , разрешается использовать стандартные арифметические действия и операцию извлечения квадратного корня.

Прислать комментарий     Решение

Задача 73789

Темы:   [ Квадратные корни (прочее) ]
[ Теоремы Тейлора и приближения функций ]
[ Иррациональные неравенства ]
[ Десятичная система счисления ]
Сложность: 5
Классы: 9,10,11

Вычислите квадратный корень из числа 0,111...111 (100 единиц) с точностью до а) 100; б) 101; в)* 200 знаков после запятой.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .