|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в некоторой точке булавкой. При повороте одного из многоугольников около этой "оси" на 25o30 Найти все положительные решения системы уравнений |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
Найти все положительные решения системы уравнений
Известно, что квадратные уравнения ax² + bx + c = 0 и bx² + cx + a = 0 (a, b и c – отличные от нуля числа) имеют общий корень.
На каждой из ста карточек записано по одному числу, отличному от нуля, так, что каждое число равно квадрату суммы всех остальных.
Решите систему уравнений:
Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|