Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 158]
Остап Бендер в интервью шахматному журналу о сеансе одновременной игры в Васюках сообщил, что в одной из партий у него осталось фигур в 3 раза меньше, чем у соперника, и в 6 раз меньше, чем свободных клеток на доске, а в другой партии фигур у него осталось в 5 раз меньше, чем у соперника, и в 10 раз меньше, чем свободных клеток на доске, и все-таки он сумел выиграть обе партии. Можно ли верить его рассказу?
|
|
Сложность: 2+ Классы: 5,6,7,8
|
На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?
|
|
Сложность: 2+ Классы: 6,7,8
|
Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за n – 1 ход можно собрать все шашки на одной клетке.
|
|
Сложность: 3- Классы: 8,9,10
|
На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра
до центров всех чёрных клеток обозначена через a, а до центров всех белых
клеток – через b. Докажите, что a = b.
|
|
Сложность: 3- Классы: 7,8,9
|
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 158]