ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тутеску Л.

Решите систему уравнений:
   (x3 + x4 + x5)5 = 3x1,
   (x4 + x5 + x1)5 = 3x2,
   (x5 + x1 + x2)5 = 3x3,
   (x1 + x2 + x3)5 = 3x4,
   (x2 + x3 + x4)5 = 3x5.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 35349

Тема:   [ Симметрические системы. Инволютивные преобразования ]
Сложность: 2+
Классы: 8,9

Решить систему уравнений:
    xy = 1,
    yz = 2,
    zx = 8.

Прислать комментарий     Решение

Задача 35641

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3
Классы: 8,9,10

Существуют ли три различных действительных числа, каждое из которых в сумме с произведением двух оставшихся дает одно и то же число?

Прислать комментарий     Решение

Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 97861

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Найти все решения системы уравнений:   (x + y)³ = z,  (y + z)³ = x,  (z + x)³ = y.

Прислать комментарий     Решение

Задача 97966

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Системы алгебраических нелинейных уравнений ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10

Автор: Тутеску Л.

Решите систему уравнений:
   (x3 + x4 + x5)5 = 3x1,
   (x4 + x5 + x1)5 = 3x2,
   (x5 + x1 + x2)5 = 3x3,
   (x1 + x2 + x3)5 = 3x4,
   (x2 + x3 + x4)5 = 3x5.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .