ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]      



Задача 98038

Темы:   [ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
[ НОД и НОК. Взаимная простота ]
[ Ряды с неотрицательными членами ]
Сложность: 4-
Классы: 9,10

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

Прислать комментарий     Решение

Задача 98290

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Существует ли возрастающая арифметическая прогрессия
  а) из 11,
  б) из 10000,
  в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая арифметическая прогрессия?

Прислать комментарий     Решение

Задача 109635

Темы:   [ Арифметическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10

Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Прислать комментарий     Решение

Задача 110182

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?

Прислать комментарий     Решение

Задача 111914

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .