Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 158]
|
|
Сложность: 5 Классы: 9,10,11
|
Назовём лабиринтом шахматную доску 8×8, на которой между некоторыми
полями поставлены перегородки. По команде ВПРАВО ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на
месте; аналогично выполняются команды ВЛЕВО, ВВЕРХ и ВНИЗ. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?
|
|
Сложность: 5 Классы: 8,9,10
|
В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?
|
|
Сложность: 5+ Классы: 9,10,11
|
Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода
обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.
|
|
Сложность: 2 Классы: 5,6,7
|
Во время игры в шахматы у Ёжика в какой-то момент оказалось на доске в два раза меньше фигур, чем у Медвежонка, при этом их было в пять раз меньше чем свободных клеток на доске. Сколько фигур Медвежонка было съедено к этому моменту?
Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 158]