ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB, O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать? В треугольнике ABC проведены биссектрисы AD
и BE. Найдите величину угла C, если известно, что
AD . BC = BE . AC и AC Пусть p – простое число и представление числа n
в p-ичной системе имеет вид: n = akpk + ak–1pk–1 + ... + a1p1 + a0. На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? |
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1119]
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
В Италии выпускают часы, в которых часовая стрелка делает в сутки один оборот, а минутная – 24 оборота, причём, как обычно, минутная стрелка длиннее часовой (в обычных часах часовая стрелка делает в сутки два оборота, а минутная – 24). Рассмотрим все положения двух стрелок и нулевого деления итальянских часов, которые встречаются и на обычных часах. Сколько таких положений существует на итальянских часах в течение суток? (Нулевое деление отмечает 24 часа в итальянских часах и 12 часов в обычных часах.)
Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1119]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке