ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 368]
Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных) $a(b - c)$ делится на $n$, то $b = c$.
Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
Карточка матлото представляет собой таблицу 10×10 клеточек. Играющий
отмечает 10 клеточек и отправляет карточку в конверте. После этого в газете
публикуется десятка проигрышных клеточек. Докажите, что
С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой.
Перед экстрасенсом лежит колода из 36 карт рубашкой вверх (4 масти, по 9 карт каждой масти). Он называет масть верхней карты, после чего карту открывают и показывают ему. После этого экстрасенс называет масть следующей карты и т. д. Задача экстрасенса – угадать масть как можно большее число раз. Рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Помощник экстрасенса знает порядок карт в колоде, не может менять его, но может расположить рубашку каждой из карт тем или иным образом. Мог ли экстрасенс так договориться с помощником, когда тот ещё не знал порядок карт, чтобы обеспечить угадывание масти не менее чем
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 368]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке