ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".

Вниз   Решение


Автор: Бутырин Б.

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.

Вверх   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 21641]      



Задача 30262

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Из книги выпал кусок, первая страница которого имеет номер 439, а номер последней записывается теми же цифрами в каком-то другом порядке. Сколько страниц в выпавшем куске?
Прислать комментарий     Решение


Задача 30269

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?

Прислать комментарий     Решение


Задача 30272

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

По дороге цепочкой ползут три черепахи. "За мной ползут две черепахи" - говорит первая. "За мной ползет одна черепаха, и передо мной ползет одна черепаха" - говорит вторая. "Передо мной ползут две черепахи, и за мной ползет одна черепаха" - говорит третья. Как такое может быть?

Прислать комментарий     Решение

Задача 30320

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Прислать комментарий     Решение

Задача 30321

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7,8

Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 21641]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .