ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 21641]      



Задача 103800

Тема:   [ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7

В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?

Прислать комментарий     Решение


Задача 104029

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 2-
Классы: 7,8

а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
б) Из новой фигуры уберите 3 спички так, чтобы осталось только 3 квадрата.

Прислать комментарий     Решение

Задача 86861

Тема:   [ Правильная пирамида ]
Сложность: 2
Классы: 10,11


Докажите, что в любой правильной пирамиде все боковые ребра равны.

Прислать комментарий     Решение


Задача 87046

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

Прислать комментарий     Решение

Задача 87048

Тема:   [ Геометрия (прочее) ]
Сложность: 2
Классы: 10,11


Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 21641]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .