ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 598]      



Задача 116793

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 5,6

Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?

Прислать комментарий     Решение

Задача 78188

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц?
Прислать комментарий     Решение


Задача 30645

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

Прислать комментарий     Решение


Задача 30647

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Докажите, что все числа ряда являются составными.

Прислать комментарий     Решение


Задача 30834

Тема:   [ Системы счисления ]
Сложность: 4
Классы: 8,9

Сформулируйте (и докажите) условие, позволяющее определить четность числа по его записи

а) в троичной системе счисления;

б) в системе счисления с основанием n.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .