ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 499]      



Задача 116454

Темы:   [ Десятичная система счисления ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Найдите значение выражения    ,   если  а = ,   b = .

Прислать комментарий     Решение

Задача 116827

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
На какую наибольшую степень двойки может делиться такое число?

Прислать комментарий     Решение

Задача 116931

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа M и N, большие десяти, состоящие из одинакового количества цифр и такие, что  M = 3N.  Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число N?

Прислать комментарий     Решение

Задача 117000

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Астролог считает, что 2013 год счастливый, потому что 2013 нацело делится на сумму  20 + 13.
Будет ли когда-нибудь два счастливых года подряд?

Прислать комментарий     Решение

Задача 30643

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.

Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .