ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AD < AB. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Вниз   Решение


Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки  (1, 2, 4, 8, 1, 3, 6, 1, ...).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157]      



Задача 104045

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2-
Классы: 7,8

  а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
  б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
  в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?

Прислать комментарий     Решение

Задача 30320

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Прислать комментарий     Решение

Задача 30321

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7,8

Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Прислать комментарий     Решение

Задача 30322

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

Прислать комментарий     Решение

Задача 30324

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .