Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 80]
|
|
Сложность: 3 Классы: 8,9,10,11
|
На рисунке изображены графики трёх квадратных трёчленов.
Можно ли подобрать такие числа a, b и c, чтобы это были графики трёхчленов ax² + bx + c, bx² + cx + a и cx² + ax + b?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.
|
|
Сложность: 3 Классы: 8,9,10
|
На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx.
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что график многочлена
а) x³ + px; б) x³ + px + q; в) ax³ + bx² + cx + d
имеет центр симметрии.
|
|
Сложность: 3+ Классы: 9,10,11
|
На координатной плоскости изображен график функции y = ax² + bx + c (см. рисунок).
На этой же координатной плоскости схематически изобразите график функции y = cx² + 2bx + a.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 80]