Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 158]
|
|
Сложность: 4- Классы: 8,9,10
|
Дана бесконечная клетчатая бумага со стороной клетки, равной единице.
Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от
одной клетки до другой (считается путь центра ладьи). В какое наименьшее число
красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы
две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в два цвета (для каждых конкретных m и n своя раскраска), что каждые две клетки, соединённые одним ходом крокодила, будут покрашены в разные цвета.
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?
|
|
Сложность: 4 Классы: 9,10,11
|
В какое наименьшее число цветов нужно раскрасить клетки бесконечного листа клетчатой бумаги, чтобы
а) каждые две клетки на расстоянии 6 были покрашены в разные цвета?
б) каждые четыре клетки, образующие фигуру формы буквы Г, были покрашены в четыре разных цвета?
(Расстояние между клетками – наименьшее число линий сетки, горизонтальных и вертикальных, которые должна пересечь ладья на пути из одной клетки в другую.)
Страница:
<< 26 27 28 29 30 31
32 >> [Всего задач: 158]