ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

Вниз   Решение


При изготовлении партии из  N ≥ 5  монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 64887

Темы:   [ Четырехугольная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Три точки, лежащие на одной прямой ]
[ Проективные преобразования пространства ]
[ Касательные к сферам ]
Сложность: 4
Классы: 11

Автор: Нилов Ф.

Дана описанная четырёхугольная пирамида ABCDS. Противоположные стороны основания пересекаются в точках P и Q, причём точки A и B лежат на отрезках PD и PC. Вписанная сфера касается боковых граней ABS и BCS в точках K и L. Докажите, что если прямые PK и QL пересекаются, то точка касания сферы и основания лежит на отрезке BD.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .