ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 407]      



Задача 60501

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 8,9

Для некоторых целых x и y число  3x + 2y  делится на 23. Докажите, что число  17x + 19y  также делится на 23.

Прислать комментарий     Решение

Задача 60505

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Найдите все натуральные  n > 1,  для которых  n³ – 3  делится на  n – 1.

Прислать комментарий     Решение

Задача 60551

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 6,7,8,9

Пусть α – действительное положительное число, d – натуральное.
Докажите, что количество натуральных чисел, не превосходящих α и делящихся на d, равно  [α/d].

Прислать комментарий     Решение

Задача 60552

Темы:   [ Делимость чисел. Общие свойства ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 7,8,9

Докажите, что для действительного положительного α и натурального d всегда выполнено равенство  [α/d] = [[α]/d].

Прислать комментарий     Решение

Задача 60650

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 407]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .