ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 418]      



Задача 116882

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

На какую наибольшую степень двойки делится число  1020 – 220?

Прислать комментарий     Решение

Задача 116988

Темы:   [ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан многочлен P(x) с целыми коэффициентами. Известно, что  Р(1) = 2013,  Р(2013) = 1,  P(k) = k,  где k – некоторое целое число. Найдите k.

Прислать комментарий     Решение

Задача 30409

Темы:   [ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что существует такое натуральное n, что числа  n + 1,  n + 2,  ...,  n + 1989  – составные.

Прислать комментарий     Решение

Задача 30596

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что  1n + 2n + ... + (n – 1)n  делится на n при нечётном n.

Прислать комментарий     Решение

Задача 30600

Темы:   [ Делимость чисел. Общие свойства ]
[ Симметрия и инволютивные преобразования ]
Сложность: 3+
Классы: 7,8,9

Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .