Страница:
<< 1 2
3 4 >> [Всего задач: 16]
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что для нечётных чисел a, b и c имеет место равенство (½ (b + c), ½ (a + c), ½ (a + b)) = (a, b, c).
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что если 6n + 11m делится на 31, то n + 7m также делится на 31.
|
|
Сложность: 3+ Классы: 7,8,9
|
Каков наибольший возможный общий делитель чисел 9m + 7n и 3m + 2n, если числа m и n не имеют общих делителей, кроме единицы?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)
|
|
Сложность: 5- Классы: 8,9,10,11
|
На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на
кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для
любого набора лампочек найдется кнопка, соединенная с нечетным числом
лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить
все лампочки.
Страница:
<< 1 2
3 4 >> [Всего задач: 16]