ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 113]      



Задача 108560

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Составьте уравнение окружности с центром в точке M(3;2), касающейся прямой y = 2x + 6.

Прислать комментарий     Решение


Задача 108561

Темы:   [ Метод координат на плоскости ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

Точка M лежит на прямой 3x - 4y + 34 = 0, а точка N — на окружности x2 + y2 - 8x + 2y - 8 = 0. Найдите наименьшее расстояние между точками M и N.

Прислать комментарий     Решение


Задача 102314

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 8,9,10

На координатной плоскости заданы точки A(0;2), B(1;7), C(10;7) и D(7;1). Найдите площадь пятиугольника ABCDE, где E — точка пересечения прямых AC и BD.
Прислать комментарий     Решение


Задача 102315

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(9;1), B(2;0), D(1;5) и E(9;7). Найдите площадь пятиугольника ABCDE, где C — точка пересечения прямых AD и BE.
Прислать комментарий     Решение


Задача 102316

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(1;9), C(5;8), D(8;2) и E(2;2). Найдите площадь пятиугольника ABCDE, где B — точка пересечения прямых EC и AD.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .