Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 74]
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки
0. Длина первого прыжка равна 3, второго – 5, третьего – 9,
и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)?
|
|
|
Сложность: 3+ Классы: 10,11
|
Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.
|
|
|
Сложность: 3+ Классы: 10,11
|
Могут ли три различных числа вида 2n + 1, где n – натуральное, быть последовательными членами геометрической прогрессии?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и
a4 : b4 = 8. Чему может быть равно отношение a3 : b3?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 74]