ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 233]
Задача Иосифа Флавия.
n человек выстраиваются по кругу и
нумеруются числами от 1 до n. Затем из них исключается каждый
второй до тех пор, пока не останется только один человек.
Например, если n = 10, то порядок исключения таков: 2, 4,
6, 8, 10, 3, 7, 1, 9, так что остается номер 5.
Для данного n будем обозначать через J(n) номер последнего
оставшегося человека. Докажите, что
Последовательность a0, a1, a2, ... задана условиями a0 = 0, an+1 = P(an) (n ≥ 0), где P(x) – многочлен с целыми коэффициентами,
P(x) > 0 при x ≥ 0.
Пусть a и k > 0 произвольные числа. Определим последовательность {an} равенствами
a0 = a, an + 1 =
Докажите, что при любом неотрицательном n выполняется равенство
Зафиксируем числа a0 и a1. Построим последовательность {an} в которой
an + 1 = Выразите an
через a0, a1 и n.
Пусть p и q — отличные от нуля
действительные числа и p2 - 4q > 0. Докажите, что следующие
последовательности сходятся:
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 233]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке