Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 79]
Найдите значение выражения
1!*3-2!*4+3!*5-4!*6+...-2000!*2002+2001!.
|
|
Сложность: 3 Классы: 8,9,10
|
На доске записаны два числа a и b (a > b). Их стирают и заменяют числами a+b/2 и a–b/2. С вновь записанными числами поступают аналогичным образом. Верно ли, что после нескольких стираний разность между записанными на доске числами станет меньше 1/2002?
|
|
Сложность: 3 Классы: 7,8,9
|
Каждый член последовательности, начиная со второго, получается прибавлением
к предыдущему числу его суммы цифр. Первым членом последовательности является
единица. Встретится ли в последовательности число 123456?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?
|
|
Сложность: 3+ Классы: 7,8,9
|
Некоторые из чисел
a1,
a2, ...,
a200 написаны синим
карандашом, а остальные — красным. Если стереть все красные числа, то
останутся все натуральные числа от 1 до 100, записанные в порядке возрастания.
Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1,
записанные в порядке убывания. Докажите, что среди чисел
a1,
a2, ...,
a100 содержатся все натуральные числа от 1 до 100
включительно.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 79]