ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?

Вниз   Решение


Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

ВверхВниз   Решение


Автор: Савин А.П.

Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго?

Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу p крестиков, а второму — q ноликов.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 147]      



Задача 113555

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(6-x) = 6 .
Прислать комментарий     Решение


Задача 113557

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(8-x) = 4 .
Прислать комментарий     Решение


Задача 113559

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(7-x) = 6 .
Прислать комментарий     Решение


Задача 113561

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log3(4-x) = 2 .
Прислать комментарий     Решение


Задача 113563

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log3(5+x) = 3 .
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .