ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Вниз   Решение


На плоскости даны два непересекающихся круга. Обязательно ли найдется точка M, лежащая вне этих кругов, удовлетворяющая такому условию: каждая прямая, проходящая через точку M, пересекает хотя бы один из этих кругов?
Найдите ГМТ M, удовлетворяющих такому условию.

ВверхВниз   Решение


Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 147]      



Задача 113510

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(7+x) = 7 .
Прислать комментарий     Решение


Задача 113528

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log7(6+x) = 2 .
Прислать комментарий     Решение


Задача 113530

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(4-x) = 8 .
Прислать комментарий     Решение


Задача 113532

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(7+x) = 8 .
Прислать комментарий     Решение


Задача 113533

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(6+x) = 4 .
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .