ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Вниз   Решение


На плоскости даны два непересекающихся круга. Обязательно ли найдется точка M, лежащая вне этих кругов, удовлетворяющая такому условию: каждая прямая, проходящая через точку M, пересекает хотя бы один из этих кругов?
Найдите ГМТ M, удовлетворяющих такому условию.

ВверхВниз   Решение


Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD и точка O внутри него. Известно, что  ∠AOB = ∠COD = 120°,  AO = OB  и  CO = OD.  Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
  а)  KL = LM;
  б) треугольник KLM – правильный.

ВверхВниз   Решение


В прямоугольной системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график функции  $y = f(x)$.  Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
  а)  $f(x) = 3^x$;
  б)  $f(x)$ = logax,  где  $a$ > 1  – неизвестное число.

ВверхВниз   Решение


Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности.

ВверхВниз   Решение


В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

ВверхВниз   Решение


М.В. Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на ту же денежку он приобретал полхлеба и квас.
Хватит ли той же денежки хотя бы на квас, если цены еще раз вырастут на 20%?

ВверхВниз   Решение


Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 147]      



Задача 113421

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log6(8+x) = 2 .
Прислать комментарий     Решение


Задача 113443

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(4-x) = 5 .
Прислать комментарий     Решение


Задача 113465

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log5(4+x) = 2 .
Прислать комментарий     Решение


Задача 113466

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log2(8+x) = 6 .
Прислать комментарий     Решение


Задача 113488

Темы:   [ 2.1.6 ]
[ 2.1 ]
Сложность: 2
Классы: 11

Найдите корень уравнения log4(5-x) = 2 .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .