Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 2 Классы: 8,9,10
|
Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём AE : EB = 1 : 2, а CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?
Из центра каждой из двух данных окружностей проведены касательные к другой окружности.
Докажите, что хорды, соединяющие точки пересечения касательных с окружностями, (см. рис.) равны.
|
|
Сложность: 3+ Классы: 8,9,10
|
В таблице
0 1 2 3 ... 9
9 0 1 2 ... 8
8 9 0 1 ... 7
...
1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один
элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.
Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как a : b : a (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях a : b : a и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника.
Страница: 1
2 >> [Всего задач: 8]