ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 502]      



Задача 32040

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10

Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
  а) число всех счастливых билетов чётно;
  б) сумма номеров всех счастливых билетов делится на 999.

Прислать комментарий     Решение

Задача 34851

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Ориентированные графы ]
Сложность: 3
Классы: 7,8,9

В дискуссии приняли участие 15 депутатов. Каждый из них в своем выступлении раскритиковал ровно k из оставшихся 14 депутатов.
При каком наименьшем k можно утверждать, что найдутся два депутата, которые раскритиковали друг друга?

Прислать комментарий     Решение

Задача 35037

Темы:   [ Уравнения в целых числах ]
[ Раскладки и разбиения ]
Сложность: 3
Классы: 8,9,10

В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек.
Докажите, что m монетами можно набрать k рублей.

Прислать комментарий     Решение

Задача 35071

Темы:   [ НОД и НОК. Взаимная простота ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

Прислать комментарий     Решение

Задача 60344

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?

  б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .