ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи


Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

Вниз   Решение



Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 87425

Тема:   [ Геометрия (прочее) ]
Сложность: 3+
Классы: 10,11


Из середины высоты правильной треугольной пирамиды опущены перпендикуляры на боковое ребро и на боковую грань. Эти перпендикуляры равны соответственно a и b. Найдите объем пирамиды. При всяких ли a и b задача имеет решение ?

Прислать комментарий     Решение


Задача 66606

Темы:   [ Раскраски ]
[ Системы точек ]
[ Геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Каждая точка плоскости раскрашена в один из трех цветов. Обязательно ли найдется треугольник площади 1, все вершины которого имеют одинаковый цвет?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .