Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 604]      



Задача 115310

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

ABCD – выпуклый четырёхугольник,  AB = BC  и  AD = DC.  На диагонали AC нашлась такая точка K, что  AK = BK  и четырёхугольник KBCD – вписанный. Докажите, что  BD = CD.

Прислать комментарий     Решение

Задача 115318

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

AD – диаметр окружности, описанной около четырёхугольника ABCD. Точка E симметрична точке A относительно середины BC.
Докажите, что  DEBC.

Прислать комментарий     Решение

Задача 115583

Темы:   [ Подобные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В треугольнике KLM  KM = 15,  LM = 12,  cos∠M = ⅖,  KE – высота. Через точку E проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону KM в точке F. Найдите EF.

Прислать комментарий     Решение

Задача 115765

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9,10,11

Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

Прислать комментарий     Решение

Задача 116386

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .