ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

Вниз   Решение


На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

ВверхВниз   Решение


Дан треугольник площади 1 со сторонами  a $ \leq$ b $ \leq$ c. Докажите, что  b $ \geq$ $ \sqrt{2}$.

ВверхВниз   Решение


Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 67334

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8,9,10

Биссектрисы $AI$ и $CI$ пересекают описанную окружность треугольника $ABC$ в точках $A_1$, $C_1$ соответственно. Описанная окружность треугольника $AIC_1$ пересекает сторону $AB$ в точке $C_0$; аналогично определим $A_0$. Докажите, что точки $A_0,$ $A_1$, $C_0$, $C_1$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 108428

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Внутри данной окружности находится другая окружность; CAE и DBF — две хорды большей окружности (не пересекающиеся), касающиеся меньшей окружности в точках A и B; CND, EPF — дуги между концами хорд. Найдите угловую величину дуги CND, если дуги AMB и EPF содержат соответственно 154o и 70o.

Прислать комментарий     Решение


Задача 52499

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан вписанный четырехугольник ABCD. Противоположные стороны AB и CD при продолжении пересекаются в точке K, стороны BC и AD - в точке L. Докажите, что биссектрисы углов BKC и BLA перпендикулярны.

Прислать комментарий     Решение


Задача 54862

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Вершины B, C, D четырёхугольника ABCD расположены на окружности с центром O, которая пересекает сторону AB в точке F, а сторону AD – в точке E. Известно, что угол BAD прямой, хорда EF равна хорде FB и хорды BC, CD, ED равны между собой. Найдите угол ABO.

Прислать комментарий     Решение

Задача 54863

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Вершины B, C, D четырёхугольника ABCD расположены на окружности с центром O. Эта окружность пересекает сторону AD в точке E, а сторону AB – в точке F. Известно, что хорды BF, FE и ED равны, а также равны между собой хорды BC и CD. Найдите угол OBC, если известно, что угол DAB прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .