ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Угол между касательной и хордой
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 275]
В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.
Окружность с центром в точке O, лежит на гипотенузе AC прямоугольного треугольника ABC, касается его катетов AB и BC. Найдите AC, если известно, что AM = , AN : MN = 6 : 1, где M — точка касания AB с окружностью, а N — точка пересечения окружности с AC, расположенная между точками A и O.
На гипотенузе KM прямоугольного треугольника KLM расположен центр O окружности, которая касается катетов KL и LM в точках A и B соответственно. Найдите AK, если известно, что BM = , AK : AC = 5 : 23, где C — точка пересечения окружности с KM, лежащая между точками O и M.
Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке.
В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведённая в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF = a, AD = b. Найдите EF.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|