ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6.

Вниз   Решение


Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 53353

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.

Прислать комментарий     Решение

Задача 53408

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Две высоты треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 116167

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

Прислать комментарий     Решение

Задача 116499

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 7,8,9

В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и  KL = KC.  На стороне BC выбрана точка M так, что  ∠KMB = ∠BAC.  Докажите, что  KM = AL.

Прислать комментарий     Решение

Задача 53369

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На катетах AC и BC прямоугольного треугольника вне его построены квадраты ACDE и BCKF. Из точек E и F на продолжение гипотенузы опущены перпендикуляры EM и FN. Докажите, что  EM + FN = AB.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .