|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6. Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]
Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.
Две высоты треугольника равны. Докажите, что треугольник равнобедренный.
Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что EF = FL.
В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и KL = KC. На стороне BC выбрана точка M так, что ∠KMB = ∠BAC. Докажите, что KM = AL.
На катетах AC и BC прямоугольного треугольника вне его построены квадраты ACDE и BCKF. Из точек E и F на продолжение гипотенузы опущены перпендикуляры EM и FN. Докажите, что EM + FN = AB.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|