Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 222]      



Задача 98028

Темы:   [ Уравнения в целых числах ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

Дано натуральное число n. Рассматриваются такие тройки различных натуральных чисел  (a, b, c),  что  a + b + c = n.  Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
  а)  K(n) > n/6 – 1;
  б)  K(n) < 2n/9.

Прислать комментарий     Решение

Задача 98300

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

Автор: Шень А.Х.

Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов  n > m.  Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.

Прислать комментарий     Решение

Задача 98320

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 8,9

а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.

б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

Прислать комментарий     Решение

Задача 109935

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Подсчет двумя способами ]
[ Инварианты ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9,10,11

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Прислать комментарий     Решение

Задача 110054

Темы:   [ Степень вершины ]
[ Подсчет двумя способами ]
[ Деление с остатком ]
Сложность: 4-
Классы: 8,9,10

В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города A статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих A с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .