Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 1325]      



Задача 78572

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 7,8,9,10

Имеется 11 мешков монет. В 10 из них монеты настоящие, а в одном – все монеты фальшивые. Все настоящие монеты одного веса, все фальшивые монеты – также одного, но другого веса. Имеются весы, с помощью которых можно определить, какой из двух грузов тяжелее и на сколько. Двумя взвешиваниями определить, в каком мешке фальшивые монеты.

Прислать комментарий     Решение

Задача 78598

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них не было выбрать двух кучек равного веса.
Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.

Прислать комментарий     Решение

Задача 78783

Темы:   [ Выигрышные и проигрышные позиции ]
[ Простые числа и их свойства ]
[ Деление с остатком ]
Сложность: 4
Классы: 9,10,11

Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве pn, где p – простое число,  n = 0, 1, 2, 3, ...  (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?

Прислать комментарий     Решение

Задача 79262

Темы:   [ Теория игр (прочее) ]
[ Подобные фигуры ]
Сложность: 4
Классы: 10

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9 максимальной скорости полицейского. Полицейский хочет оказаться вместе с гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?

Прислать комментарий     Решение

Задача 79378

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9

См. задачу 79385 а) и б).

Прислать комментарий     Решение

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 1325]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .