ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что числа 1, 2, ..., n ни при каком  n > 1  нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого.

Вниз   Решение


Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.

ВверхВниз   Решение


Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

ВверхВниз   Решение


В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

ВверхВниз   Решение


а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 66573

Темы:   [ Числовые последовательности (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

На доске написаны $2n$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на сумму и разность чисел этой пары (не обязательно вычитать из большего числа меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $2n$ последовательных чисел.
Прислать комментарий     Решение


Задача 66837

Темы:   [ Числовые последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 8,9,10,11

Дана возрастающая последовательность положительных чисел  $...< a_{-2} < a_{-1} < a_{0} < a_{1} < a_{2} < ...,$  бесконечная в обе стороны. Пусть $b_k$ – наименьшее целое число со свойством: отношение суммы любых $k$ подряд идущих членов данной последовательности к наибольшему из этих $k$ членов не превышает $b_k$. Докажите, что последовательность $b_{1}, b_{2}, b_{3}$, ... либо совпадает с натуральным рядом 1, 2, 3, ..., либо с некоторого момента постоянна.

Прислать комментарий     Решение

Задача 65118

Темы:   [ Числовые последовательности (прочее) ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать?

Прислать комментарий     Решение

Задача 65125

Темы:   [ Числовые последовательности (прочее) ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 11

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается число 4 или 5, а любые два соседних члена различаются не больше, чем на 2. Сколько последовательностей ему придётся выписать?

Прислать комментарий     Решение

Задача 109603

Темы:   [ Числовые последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого  k = 1, 2, 3, ...  сумма первых k членов последовательности делится на k?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .