ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1110]      



Задача 64893

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?

Прислать комментарий     Решение

Задача 64929

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6

В семиэтажном доме живут домовые. Лифт курсирует между первым и последним этажами, останавливаясь на каждом этаже. На каждом этаже, начиная с первого, в лифт заходил один домовой, но никто не выходил. Когда в лифт зашёл тысячный домовой, лифт остановился. На каком этаже это произошло?

Прислать комментарий     Решение

Задача 64934

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6

По трём пустым сундукам разложили 40 золотых и 40 серебряных монет, причем в каждый сундук – монеты обоих видов. В первом сундуке оказалось золотых монет на 7 больше, чем серебряных, а во втором сундуке – серебряных монет на 15 меньше, чем золотых. Каких монет больше в третьем сундуке и на сколько?

Прислать комментарий     Решение

Задача 64948

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

Прислать комментарий     Решение

Задача 64992

Темы:   [ Турниры и турнирные таблицы ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9

По окончании шахматного турнира Незнайка сказал: "Я набрал на 3,5 очка больше, чем потерял". Могут ли его слова быть правдой?
(Победа – 1 очко, ничья – ½ очка, поражение – 0.)

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .