Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1119]
64 неотрицательных числа, сумма которых равна 1956, расположены в форме
квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма
чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные
симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в
каждом столбце меньше 1035.
|
|
Сложность: 3+ Классы: 9,10
|
Груз весом 13,5 т упакован в ящики так, что вес каждого ящика не превосходит
350 кг. Докажите, что этот груз можно перевезти на 11 полуторатонках. (Весом пустого ящика можно пренебречь.)
|
|
Сложность: 3+ Классы: 10,11
|
В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.
|
|
Сложность: 3+ Классы: 10,11
|
Доказать, что можно так расположить числа от 1 до n² в таблицу n×n, чтобы суммы чисел каждого столбца были равны.
Лист клетчатой бумаги размером 5×n заполнен карточками размером
1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1119]