|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω. |
Задача 109258
УсловиеПлоскость, проходящая через ребро AD и середину E ребра BC тетраэдра ABCD , образует углы α и β с гранями ACD и ABD этого тетраэдра. Найдите объём тетраэдра, если известно, что AD = a , а площадь треугольника ADE равна S .РешениеДостроим тетраэдр ABCD до треугольной призмы ABCDB1C1 (рис.1) ( AD || BB1 || CC1) . Через точку E проведём плоскость, перпендикулярную AD . Пусть эта плоскость пересекает прямые AD , BB1 и CC1 в точках M , P и Q соответственно. Тогда PQM – перпендикулярное сечение призмы ABCDB1C1 , точка E – середина PQ ,Поэтому Следовательно, ОтветИсточники и прецеденты использования
|
|||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|