Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Фома и Ерёма делят кучку из 25 монет в 1, 2, 3, ..., 25 алтынов. На каждом ходу один из них выбирает монету из кучки, а другой говорит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас больше алтынов, при равенстве – тот же, кто в прошлый раз. Может ли Фома действовать так, чтобы в итоге обязательно получить больше алтынов, чем Ерёма, или Ерёма всегда сможет Фоме помешать?

Вниз   Решение


На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

ВверхВниз   Решение


Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

ВверхВниз   Решение


Сколькими способами можно разложить семь монет различного достоинства по трём карманам?

ВверхВниз   Решение


Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

Вверх   Решение

Задача 53412
Темы:    [ Свойства биссектрис, конкуррентность ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что биссектрисы треугольника пересекаются в одной точке.


Подсказка

Точка пересечения двух биссектрис треугольника равноудалена от всех сторон треугольника.


Решение

Пусть O – точка пересечения биссектрис треугольника ABC, проведённых из вершин B и C. Поскольку точка O лежит на биссектрисе угла B, то она равноудалена от прямых AB и BC. В то же время точка O лежит на биссектрисе угла C, поэтому она равноудалена от прямых AC и BC. Значит, точка O равноудалена от прямых AB и AC. Так как она находится внутри треугольника ABC, то лежит и на биссектрисе угла A.

Замечания

Поскольку точка пересечения биссектрис треугольника равноудалена от всех его сторон, она является центром вписанной в треугольник окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 0
Название Вводные задачи
задача
Номер 05.000.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .