Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).

   Решение

Задача 61195
Темы:    [ Свойства медиан. Центр тяжести треугольника. ]
[ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 8
Название Алгебра + геометрия
Тема Неопределено
параграф
Номер 2
Название Комплексные числа и геометрия
Тема Неизвестная тема
задача
Номер 08.034

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .