|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара. б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров, |
Задача 56902
УсловиеОкружность S касается окружностей S1 и S2 в точках A1 и A2. РешениеПусть O, O1 и O2 – центры окружностей S, S1 и S2; X – точка пересечения прямых O1O2 и A1A2. Применяя теорему Менелая к треугольнику OO1O2 и точкам A1, A2 и X, получаем Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|